Status of VV' production in NNLO QCD

Dirk Rathley

with F. Cascioli, T. Gehrmann, M. Grazzini, S. Kallweit, P. Maierhöfer, A. von Manteuffel, S. Pozzorini, L.Tancredi, A. Torre, E. Weihs based on 1309.7000, 1405.2219

Universität Zürich

20.6.2014

Vector boson pair production

- vector boson pair production pp o VV' logical next step in the NNLO program
 - important standard model test
 - background for Higgs analyses and BSM searches
 - experimental accuracy is approaching uncertainty of NLO prediction
 - some moderate excesses in the experimental data

	$\sigma (pp ightarrow W^+W^- + X) [pb]$	SM NLO [pb]
ATLAS 7 TeV [ATLAS collaboration (2012)]	$51.9 \pm 2.0 \pm 3.9 \pm 2.0$	$44.7^{+2.1}_{-1.9}$
CMS 7 TeV [CMS collaboration (2013)]	$52.4 \pm 2.0 \pm 4.5 \pm 1.2$	$44.7_{-1.9}^{+2.1}$
CMS 8 TeV [CMS collaboration (2013)]	$69.9 \pm 2.8 \pm 5.6 \pm 3.1$	$57.3_{-1.6}^{+2.4}$

Status of $pp \rightarrow VV'$

- ullet NNLO QCD calculation of $\gamma\gamma$ done [Catani, Cieri, de Florian, Ferrera, Grazzini (2011)]
- next step: $Z\gamma$ and $W\gamma$
 - QCD NLO corrections available [Ohnemus (1993); Baur, Han, Ohnemus (1998);
 - de Florian, Signer (2000); Campbell, Ellis, Williams (2011)]
 - loop-induced gg contribution [Amettler, Gava, Paver, Treleani (1985); van der Bij, Glover (1988);
 - Adamson, de Florian, Signer (2003)]
 - electroweak corrections available [Hollik, Meier (2004); Accomando, Denner, Meier (2006)]
- necessary ingredients:
 - $pp o V\gamma + 2$ partons at tree level, available
 - ullet $pp o V\gamma+1$ parton at one loop, available [Campbell, Hartanto, Williams (2012)]
 - $pp o V\gamma$ at two loops, available [Matsuura, van der Marck, van Neerven (1989);

Gehrmann, Tancredi (2012)]

- ullet $gg
 ightarrow V \gamma$ loop-induced, available
- we obtain tree- and one-loop amplitudes from OpenLoops + Collier library [Cascioli, Maierhofer, Pozzorini (2012); Denner, Dittmaier, Hofer; Denner, Dittmaier (2005)]
- use q_T subtraction [Catani, Grazzini (2007)] for handling of IR divergences

q_T subtraction method

applicable to production of colorless final state F

$$\mathrm{d}\sigma^{F}_{(N)NLO} = \mathcal{H}^{F}_{(N)NLO} \otimes \mathrm{d}\sigma_{LO} + \left[\mathrm{d}\sigma^{F+jet}_{(N)LO} - \mathrm{d}\sigma^{CT}\right]$$

- counterterm $d\sigma^{CT} = \Sigma(q_T/Q) \otimes d\sigma_{LO}$, cancels $q_T \to 0$ singularity of $d\sigma^{F+jet}_{(N)LO}$
- $\Sigma(q_T/Q) = \left(\frac{\alpha_S}{\pi}\right) \Sigma^{(1)}(q_T/Q) + \left(\frac{\alpha_S}{\pi}\right)^2 \Sigma^{(2)}(q_T/Q) + \dots$
- hard function $\mathcal{H}^{\textit{F}}$ contains radiative corrections to Born level subprocess

•
$$\mathcal{H}^F = \underbrace{1}_{\text{tree level}} + \underbrace{\left(\frac{\alpha_S}{\pi}\right)\mathcal{H}^{F(1)}}_{\text{(finite) one-loop amplitude}} + \underbrace{\left(\frac{\alpha_S}{\pi}\right)^2\mathcal{H}^{F(2)}}_{\text{(finite) two-loop amplitude}} + \dots$$

$Z\gamma$: Setup and cross sections

- ullet we present results for $pp o\ell^+\ell^-\gamma+X$ [M. Grazzini, S. Kallweit, D. R., A. Torre; 1309.7000]
- setup close to the ATLAS analysis [ATLAS collaboration (2013)]

•
$$p_T^\gamma > 15\,\mathrm{GeV}$$
 or $p_T^\gamma > 40\,\mathrm{GeV}$, $|\eta^\gamma| < 2.37$

•
$$p_T^{\ell} > 25 \, \text{GeV}, \, |\eta^{\ell}| < 2.47$$

- $m_{\ell\ell} > 40 \, \text{GeV}$
- $\Delta R(\ell, \gamma) > 0.7$, $\Delta R(\ell/\gamma, jet) > 0.3$
- Frixione isolation with $\varepsilon = 0.5$, R = 0.4

		LO	NLO	NNLO	exp.
$p_{\scriptscriptstyle T}^{\gamma} > 15{\sf GeV}$	σ [pb]	0.851(1)	1.226(1)	1.308(3)	1.31(12)
$p_T > 15 \mathrm{GeV}$	rel. correction		44%	7%	
$p_T^{\gamma} > 40 \text{GeV}$	σ [fb]	77.45(3)	132.90(8)	153.3(5)	
	rel. correction		72%	16%	
CMS setup	σ [pb]	1.334(1)	1.891(1)	2.021(5)	
[CMS collaboration (2013)]	rel. correction		42%	7%	

$Z\gamma$: Comparison with data

- NNLO effect grows with p_T
- · agreement with data slightly improved

$Z\gamma$: Invariant mass distribution

- implicit cuts at LO can increase corrections significantly
- gg fusion contribution very small ($\sim 0.5\%$)

$W\gamma$: measurement

• $\sim 2\sigma$ excess in ATLAS measurement, but NLO corrections are large ($\sim 100\%)$

$\sigma^{ m ext-fid}[m pb]$	$\sigma^{ m ext-fid}[m pb]$
Measurement	MCFM Prediction
N	$f_{ m jet} \ge 0$
$e\nu\gamma$ 2.74 ± 0.05 (stat) ± 0.32 (sys	$(t) \pm 0.14 \text{ (lumi)} \qquad 1.96 \pm 0.17$
$\mu\nu\gamma$ 2.80 ± 0.05 (stat) ± 0.37 (sys	$(st) \pm 0.14 \text{ (lumi)} \qquad 1.96 \pm 0.17$
$\ell\nu\gamma$ 2.77 ± 0.03 (stat) ± 0.33 (sys	$(st) \pm 0.14 \text{ (lumi)} \qquad 1.96 \pm 0.17$
$e^+e^-\gamma$ 1.30 ± 0.03 (stat) ± 0.13 (sys	$(t) \pm 0.05 \text{ (lumi)}$ 1.18 ± 0.05
$\mu^{+}\mu^{-}\gamma$ 1.32 ± 0.03 (stat) ± 0.11 (sys	$(t) \pm 0.05 \text{ (lumi)}$ 1.18 ± 0.05
$\ell^+\ell^-\gamma$ 1.31 ± 0.02 (stat) ± 0.11 (sys	$(t) \pm 0.05 \text{ (lumi)}$ 1.18 ± 0.05
$\nu\bar{\nu}\gamma$ 0.133 ± 0.013 (stat) ± 0.020 (sy	$(vst) \pm 0.005 \text{ (lumi)} 0.156 \pm 0.012$

 $[\mathsf{ATLAS}\ \mathsf{collaboration}\ (2013)]$

could be a NNLO effect

$W\gamma$: Setup and cross sections

• setup close to the ATLAS analysis [ATLAS collaboration (2013)] same setup as for $Z\gamma$, except for

•
$$m_{\ell\ell} > 40 \, \text{GeV}$$
 \rightarrow $p_{T.miss} > 35 \, \text{GeV}$

• preliminary: [M. Grazzini, S. Kallweit, D. R., A. Torre]

		LO	NLO	NNLO	exp.
W^+	σ [pb]	0.511(1)	1.155(1)	1.371(5)	
VV	rel. correction		126%	19%	
	σ [pb]	0.395(1)	0.910(1)	1.085(4)	
V V	rel. correction		130%	19%	
total	σ [pb]	0.906(1)	2.065(1)	2.456(6)	2.770(340)
	rel. correction		128%	19%	

$W\gamma$: Comparison with data

- NNLO effect grows with p_T
- agreement with data improved

$W\gamma$: Origin of the large K factor

- naively: couplings larger for $W\gamma$ than for $Z\gamma$
- however: gauge cancellation for $W\gamma \Rightarrow$ partonic tree-level amplitude vanishes at $\cos\theta^*=\pm\frac{1}{2}$
- gets filled up by real radiation corrections (and by FSR contribution)

Scale uncertainties

- symmetric scale variations around $\mu_0 = \sqrt{m_V^2 + \left(p_T^\gamma\right)^2}$ tiny at NLO due to an accidental cancellation
- follow suggestion by MCFM authors and vary $\mu_R=a\mu_0,\ \mu_F=\mu_0/a,\ a\in[0.5,2]$ [Campbell, Ellis, Williams (2011)]

σ [fb]	LO	NLO	NNLO
$Z\gamma$	850.7 ⁺⁷ %	1226.2 ⁺⁴ %	$1308^{+1\%}_{-2\%}$
$W^+\gamma$	$511.0^{+6\%}_{-7\%}$	1155.3 ⁺⁷ %	$1371^{+5\%}_{-4\%}$
$W^-\gamma$	395.3 ^{+6%} _{-8%}	909.9 ⁺⁷ %	1085 ^{+4%}

pp o ZZ

- two-loop amplitudes have recently been computed
- [Henn, Melnikov, Smirnov (2014); Gehrmann, von Manteuffel, Tancredi, Weihs (2014)]
- results for on-shell ZZ production at NNLO [F. Cascioli, T. Gehrmann, M. Grazzini,
 - S. Kallweit, P. Maierhöfer, A. von Manteuffel, S. Pozzorini, D. R., L.Tancredi, E. Weihs; 1405.2219]

- NNLO corrections range from 11% to 17%
- gg fusion contribution is about 60% of the NNLO correction

pp o ZZ

\sqrt{s} [TeV]		LO	NLO	$NLO {+} gg$	NNLO
7	σ [pb]	$4.167^{+0.7\%}_{-1.6\%}$	$6.044^{+2.8\%}_{-2.2\%}$	$6.466^{+4.4\%}_{-3.2\%}$	$6.735^{+2.9\%}_{-2.3\%}$
•	rel. size		45%	7%	11%
8	σ [pb]	$5.060^{+1.6\%}_{-2.7\%}$	$7.369^{+2.8\%}_{-2.3\%}$	$7.948^{+4.3\%}_{-3.0\%}$	$8.284^{+3.0\%}_{-2.3\%}$
O	rel. size	,,	46%	8%	12%
13	σ [pb]	$9.887^{+4.9\%}_{-6.1\%}$	$14.51^{+3.0\%}_{-2.4\%}$	$16.10^{+3.5\%}_{-2.5\%}$	$16.91^{+3.2\%}_{-2.4\%}$
13	rel. size		47%	11%	17%
14	σ [pb]	$10.91^{+5.4\%}_{-6.7\%}$	$16.01^{+3.0\%}_{-2.4\%}$	$17.84^{+3.3\%}_{-2.4\%}$	$18.77^{+3.2\%}_{-2.4\%}$
14	rel. size	,	47%	11%	17%

- scale uncertainties computed with $1/2M_Z<\mu_R,\,\mu_F<2M_Z$ with $1/2<\mu_R/\mu_F<2$
- scale variations very small at LO, NLO; underestimate size of corrections

Conclusion

- results for fully differential NNLO QCD computation of $Z\gamma$ and $W^\pm\gamma$ production
 - full decay, spin correlations and off-shell effects included
 - corrections for $W^{\pm}\gamma$ larger than for $Z\gamma$ (radiation zero!)
 - loop-induced gg contribution very small, does not capture most of the NNLO correction
 - more phenomenology will follow
- inclusive on-shell production of ZZ at NNLO
 - gg contribution about 60% of NNLO corrections
 - already useful, e.g. for Higgs width determination
- outlook:
 - fully differential ZZ production, including the decay
 - WW
 - WZ and ZZ, WW including off-shell effects

Backup slides

$Z\gamma$: ATLAS and CMS setup

- ATLAS inspired setup [ATLAS collaboration (2013)]
 - $p_T^\gamma > 15\,\mathrm{GeV}$ or $p_T^\gamma > 40\,\mathrm{GeV}$, $|\eta^\gamma| < 2.37$, $p_T^\ell > 25\,\mathrm{GeV}$, $|\eta^\ell| < 2.47$
 - $m_{\ell\ell} > 40 \, \text{GeV}$
 - $\Delta R(\ell, \gamma) > 0.7$
 - $\Delta R(\ell/\gamma, jet) > 0.3$, where $E_T^{jet} > 30 \, {\rm GeV}$ and $|\eta^{jet}| < 4.4$, jets clustered using the anti- k_T algorithm with radius D=0.4
 - smooth cone isolation with $\delta_0=0.4$ and $\varepsilon=0.5$

•
$$\mu_R = \mu_F = \sqrt{m_Z^2 + (p_T^{\gamma})^2}$$

- CMS inspired setup [CMS collaboration (2013)]
 - $p_T^{\gamma} > 15 \,\text{GeV}, \ |\eta^{\gamma}| < 2.5, \ p_T^{\ell} > 20 \,\text{GeV}, \ |\eta^{\ell}| < 2.5$
 - $m_{\ell\ell} > 50 \, \text{GeV}$
 - $\Delta R(\ell, \gamma) > 0.7$
 - smooth cone isolation with $\delta_0=0.15$ and $\varepsilon=0.05$

•
$$\mu_R = \mu_F = \sqrt{m_Z^2 + (p_T^{\gamma})^2}$$

Contributions by channel

	$q\overline{q}$	gq	$g\overline{q}$	gg	qq	\overline{qq}	total [fb]
LO	851						851
NLO	1255	-6	-23				1226
NLO NNLO	1350	-16	-38	6	6	1	1309

- $q\overline{q}$ the dominant channel at each order and also has the largest corrections
- ullet gq and $g\overline{q}$ have negative weight
- gg is tiny

q_T subtraction method I

- consider a process $c\overline{c} \to F$, c = q or c = g; final state F is colorless
- then

$$d\sigma_{(N)NLO}^F\Big|_{q_T \neq 0} = d\sigma_{(N)LO}^{F+jets}$$

- singular for $q_T \to 0$, but limiting behaviour is known from transverse momentum resummation program [Bozzi, Catani, de Florian, Grazzini (2006)]
- define counterterm $\mathrm{d}\sigma^{\mathit{CT}} = \Sigma(q_T/Q) \otimes \mathrm{d}\sigma_{\mathit{LO}}, \quad Q \equiv \mathit{m_F}$
- add $q_T = 0$ piece to obtain the full result:

$$d\sigma_{(N)NLO}^{F} = \mathcal{H}_{(N)NLO}^{F} \otimes d\sigma_{LO} + \left[d\sigma_{(N)LO}^{F+jets} - d\sigma_{(N)NLO}^{CT} \right]$$

q_T subtraction method II

$$d\sigma_{(N)NLO}^{F} = \mathcal{H}_{(N)NLO}^{F} \otimes d\sigma_{LO} + \left[d\sigma_{(N)LO}^{F+jets} - \underbrace{\sum_{(N)NLO} \otimes d\sigma_{LO}}_{=d\sigma_{(N)NLO}^{CT}} \right]$$

- $\mathrm{d}\sigma_{NLO}^{F+jets}$ can be treated by known techniques (Catani-Seymour dipoles, ...)
- $\Sigma(q_T/Q) = \left(\frac{\alpha_S}{\pi}\right) \Sigma^{(1)}(q_T/Q) + \left(\frac{\alpha_S}{\pi}\right)^2 \Sigma^{(2)}(q_T/Q) + \dots$
- counterterm is universal (up to a trivial process dependence; differs for c=g or c=q) and $\Sigma^{(1)}$ and $\Sigma^{(2)}$ are known explicitly
- $\left[\mathrm{d}\sigma^{F+jets}_{(N)LO}-\mathrm{d}\sigma^{CT}\right] o 0$ for $q_T/Q o 0$

q_T subtraction method III

$$\mathrm{d}\sigma_{(N)NLO}^{\textit{F}} = \frac{\mathcal{H}_{(N)NLO}^{\textit{F}}}{(N)NLO} \otimes \mathrm{d}\sigma_{LO} + \left[\mathrm{d}\sigma_{(N)LO}^{\textit{F}+jets} - \mathrm{d}\sigma_{(N)NLO}^{\textit{CT}}\right]$$

•
$$\mathcal{H}^{F} = \underbrace{1}_{\text{tree level}} + \underbrace{\left(\frac{\alpha_{S}}{\pi}\right)\mathcal{H}^{F(1)}}_{\text{(finite) one-loop amplitude}} + \underbrace{\left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{F(2)}}_{\text{(finite) two-loop amplitude}} + \dots$$

- $oldsymbol{\cdot}$ \mathcal{H}^{F} contains the loop corrections to the Born level subprocess
- explicit process independent relations between $\mathcal{H}^{F(1)}$ [de Florian, Grazzini (2001)], $\mathcal{H}^{F(2)}$ [Catani, Cieri, de Florian, Ferrera, Grazzini (2013)] and the corresponding renormalized loop amplitudes \mathcal{M}^F are known:

$$\begin{split} \mathcal{H}^{F(1)} &= \mathcal{M}^{F(1)} - \widetilde{I}^{(1)}(\varepsilon) \mathcal{M}^{F(0)} \\ \mathcal{H}^{F(2)} &= \mathcal{M}^{F(2)} - \widetilde{I}^{(1)}(\varepsilon) \mathcal{M}^{F(1)} - \widetilde{I}^{(2)}(\varepsilon) \mathcal{M}^{F(0)}. \end{split}$$

Photon isolation

- two contributions to photon production:
 - direct production in the hard process, e.g. genuine $\ell^+\ell^-\gamma$ production
 - non-perturbative fragmentation of a hard parton
- in experiments, impose hard cone isolation: $\sum_{\delta < R} E_T^{had} \le \varepsilon_\gamma E_T^\gamma$
- only infrared safe when combined with fragmentation contribution due to quark-photon collinear singularity
- smooth cone isolation [Frixione (1998)]: define $\chi(\delta) = \left(\frac{1-\cos(\delta)}{1-\cos(R)}\right)^n$,

$$\sum_{\delta' < \delta} E_T^{had} \le \varepsilon_\gamma E_T^\gamma \, \chi(\delta) \quad \text{for all} \quad \delta \le R$$

smooth cone isolation eliminates fragmentation contribution completely